Hillslope hydrology influences the spatial and temporal patterns of remotely sensed ecosystem productivity

Prediction of ecosystem responses to a changing climate is challenging at the landscape to regional scale, in part because topography creates various habitats and influences ecosystem productivity in complex ways. However, the effects of topography on ecosystem function remain poorly characterized and quantified. To address this knowledge gap, we developed a framework to systematically quantify and evaluate the effects of topographic convergence, elevation, aspect, and forest type on the long-term (1986-2011) average and interannual variability of remotely sensed ecosystem productivity. In a forested watershed in the Rocky Mountains, spanning elevations from 1,800 to 4,000 m, we found a prevalent and positive influence of topographic convergence on long-term productivity. Interannual growing season productivity was positively related to precipitation, with higher sensitivity in low elevation and highly productive areas and lower sensitivity in convergent areas. Our findings highlight the influence of topographic complexity on both long-term and interannual variations of ecosystem productivity and have implications for understanding and prediction of ecosystem dynamics at hillslope to regional scales.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Tai, Xiaonan
Anderegg, William R. L.
Blanken, Peter D.
Burns, Sean P.
Christensen, Lindsey
Brooks, Paul D.
Publisher UCAR/NCAR - Library
Publication Date 2020-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:13:29.825671
Metadata Record Identifier edu.ucar.opensky::articles:23893
Metadata Language eng; USA
Suggested Citation Tai, Xiaonan, Anderegg, William R. L., Blanken, Peter D., Burns, Sean P., Christensen, Lindsey, Brooks, Paul D.. (2020). Hillslope hydrology influences the spatial and temporal patterns of remotely sensed ecosystem productivity. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7sx6hj7. Accessed 27 June 2025.

Harvest Source