Impact of convectively detrained ice crystals on the humidity of the tropical tropopause layer in boreal winter

Deep convection detraining in the uppermost tropical troposphere is capable of transporting water vapor and ice into the tropical tropopause layer (TTL), but the impact of deep convection on the global and regional TTL water vapor budget remains uncertain. In particular, the role of convectively detrained ice crystals that remain suspended after active convection has subsided is not well understood. These ice crystals represent aging cirrus anvils detached from the convective core. We use a cloud microphysical model that tracks individual ice crystals throughout their lifetimes to quantify the impact of detrained ice on the humidity of the TTL during boreal winter. Convective influence of air parcels near the wintertime cold point tropical tropopause is determined by tracing thousands of backward trajectories through satellite-derived, global, 3-hourly convective cloud-top altitude fields. Detrained ice, most of which is found over the tropical western Pacific, experiences cooling on the order of 1 K day(-1)downstream of convection. Downstream cooling increases relative humidity and explains the observed supersaturated TTL over this region. Vapor in excess of saturation condenses onto the detrained ice, which ultimately brings the relative humidity down to saturation. Thus, convectively detrained ice crystals in aging anvils predominantly dehydrate the TTL, but the effect is small (0.01 ppmv). Moistening by active convection (0.30 ppmv), including the rapid sublimation of convectively lofted ice crystals near the tops of core anvils, overwhelms the dehydration by aging anvil ice crystals detrained from the core. The net effect is moistening by convective core anvils during boreal winter.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Ueyama, R.
Jensen, Eric J.
Pfister, L.
Krämer, M.
Afchine, A.
Schoeberl, M.
Publisher UCAR/NCAR - Library
Publication Date 2020-07-27T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:11:11.791679
Metadata Record Identifier edu.ucar.opensky::articles:23559
Metadata Language eng; USA
Suggested Citation Ueyama, R., Jensen, Eric J., Pfister, L., Krämer, M., Afchine, A., Schoeberl, M.. (2020). Impact of convectively detrained ice crystals on the humidity of the tropical tropopause layer in boreal winter. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7j38wv4. Accessed 22 June 2025.

Harvest Source