Impacts of the Atlantic multidecadal variability on North American summer climate and heat waves

The impacts of the Atlantic multidecadal variability (AMV) on summertime North American climate are investigated using three coupled global climate models (CGCMs) in which North Atlantic sea surface temperatures (SSTs) are restored to observed AMV anomalies. Large ensemble simulations are performed to estimate how AMV can modulate the occurrence of extreme weather such as heat waves. It is shown that, in response to an AMV warming, all models simulate a precipitation deficit and a warming over northern Mexico and the southern United States that lead to an increased number of heat wave days by about 30% compared to an AMV cooling. The physical mechanisms associated with these impacts are discussed. The positive tropical Atlantic SST anomalies associated with the warm AMV drive a Matsuno-Gill-like atmospheric response that favors subsidence over northern Mexico and the southern United States. This leads to a warming of the whole tropospheric column, and to a decrease in relative humidity, cloud cover, and precipitation. Soil moisture response to AMV also plays a role in the modulation of heat wave occurrence. An AMV warming favors dry soil conditions over northern Mexico and the southern United States by driving a year-round precipitation deficit through atmospheric teleconnections coming both directly from the North Atlantic SST forcing and indirectly from the Pacific. The indirect AMV teleconnections highlight the importance of using CGCMs to fully assess the AMV impacts on North America. Given the potential predictability of the AMV, the teleconnections discussed here suggest a source of predictability for the North American climate variability and in particular for the occurrence of heat waves at multiyear time scales.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : GPCC Full Data Reanalysis Version 7.0 at 2.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data

Related Software #1 : NCAR Command Language (NCL)

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Ruprich-Robert, Yohan
Delworth, Thomas
Msadek, Rym
Castruccio, Frederic
Yeager, Stephen
Danabasoglu, Gokhan
Publisher UCAR/NCAR - Library
Publication Date 2018-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:18:44.787955
Metadata Record Identifier edu.ucar.opensky::articles:21584
Metadata Language eng; USA
Suggested Citation Ruprich-Robert, Yohan, Delworth, Thomas, Msadek, Rym, Castruccio, Frederic, Yeager, Stephen, Danabasoglu, Gokhan. (2018). Impacts of the Atlantic multidecadal variability on North American summer climate and heat waves. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7tq648b. Accessed 23 June 2025.

Harvest Source