Improved techniques for evaluating GCM cloudiness applied to the NCAR CCM3

Evaluations of GCM cloudiness typically compare climatological output with observations, but averaging over time can obscure the presence of compensating errors. A more informative and stringent evaluation can be obtained by averaging cloud properties according to meteorological process (i.e., compositing). The present study illustrates this by comparing simulated and observed cloudiness composited on 500-mb pressure vertical velocity over the summertime midlatitude North Pacific. Observed cloud properties are daily ERBE cloud radiative forcing, daily NVAP liquid water path, and 3-hourly ISCCP cloud optical thickness and cloud-top pressure. ECMWF and NCEP—NCAR reanalyses provide vertical velocity. The GCM evaluated is the NCAR CCM3 with Rasch and Kristjánsson (1998) predicted cloud condensate. Results show that CCM3 overproduces cloud optical thickness, cloud-top height, and cloud radiative forcing under conditions of synoptic ascent and underproduces cloud cover, cloud-top height, and cloud radiative forcing under conditions of synoptic subsidence. The underproduction of cloudiness in the subsidence regime creates an unrealistic sensitivity of CCM3 low-level cloud cover to changes in circulation. As a result interannual variability of summertime midlatitude North Pacific cloudiness in CCM3 is much more closely coupled to sea level pressure variability than SST variability, opposite the case for observed cloudiness. This demonstrates small-scale cloud parameterization errors directly and dominantly impact large-scale cloud variability despite the existence of a reasonable climatology.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2001 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Norris, Joel
Weaver, C.
Publisher UCAR/NCAR - Library
Publication Date 2001-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:11:09.252140
Metadata Record Identifier edu.ucar.opensky::articles:17585
Metadata Language eng; USA
Suggested Citation Norris, Joel, Weaver, C.. (2001). Improved techniques for evaluating GCM cloudiness applied to the NCAR CCM3. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7833tb6. Accessed 19 July 2025.

Harvest Source