Improving numerical weather prediction-based near-cloud aviation turbulence forecasts by diagnosing convective gravity wave breaking

Based on a convective gravity wave drag parameterization scheme in a numerical weather prediction (NWP) model, previously proposed near-cloud turbulence (NCT) diagnostics for better detecting turbulence near convection are tested and evaluated by using global in situ flight data and outputs from the operational global NWP model of the Korea Meteorological Administration for one year (from December 2016 to November 2017). For comparison, 11 widely used clear air turbulence (CAT) diagnostics currently used in operational NWP-based aviation turbulence forecasting systems are separately computed. For selected cases, NCT diagnostics predict more accurately localized turbulence events over convective regions with better intensity, which is clearly distinguished from the turbulence areas diagnosed by conventional CAT diagnostics that they mostly failed to forecast with broad areas and low magnitudes. Although overall performance of NCT diagnostics for one whole year is lower than conventional CAT diagnostics due to the fact that NCT diagnostics exclusively focus on the isolated NCT events, adding the NCT diagnostics to CAT diagnostics improves the performance of aviation turbulence forecasting. Especially in the summertime, performance in terms of an area under the curve (AUC) based on probability of detection statistics is the best (AUC = 0.837 with a 4% increase, compared to conventional CAT forecasts) when the mean of all CAT and NCT diagnostics is used, while performance in terms of root-mean-square error is the best when the maximum among combined CAT and single NCT diagnostic is used. This implies that including NCT diagnostics to currently used NWP-based aviation turbulence forecasting systems should be beneficial for safety of air travel.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2021 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Kim, Soo-Hyun
Chun, Hye-Yeong
Lee, Dan-Bi
Kim, Jung-Hoon
Sharman, Robert D.
Publisher UCAR/NCAR - Library
Publication Date 2021-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:34:55.828564
Metadata Record Identifier edu.ucar.opensky::articles:25146
Metadata Language eng; USA
Suggested Citation Kim, Soo-Hyun, Chun, Hye-Yeong, Lee, Dan-Bi, Kim, Jung-Hoon, Sharman, Robert D.. (2021). Improving numerical weather prediction-based near-cloud aviation turbulence forecasts by diagnosing convective gravity wave breaking. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7sn0dhh. Accessed 29 June 2025.

Harvest Source