Magneto-static modeling from Sunrise/IMaX: Application to an active region observed with Sunrise II

Magneto-static models may overcome some of the issues facing force-free magnetic field extrapolations. So far they have seen limited use and have faced problems when applied to quiet-Sun data. Here we present a first application to an active region. We use solar vector magnetic field measurements gathered by the IMaX polarimeter during the flight of the SUNRISE balloon-borne solar observatory in 2013 June as boundary conditions for a magneto-static model of the higher solar atmosphere above an active region. The IMaX data are embedded in active region vector magnetograms observed with SDO/HMI. This work continues our magneto-static extrapolation approach, which was applied earlier to a quiet-Sun region observed with SUNRISE I. In an active region the signal-to-noise-ratio in the measured Stokes parameters is considerably higher than in the quiet-Sun and consequently the IMaX measurements of the horizontal photospheric magnetic field allow us to specify the free parameters of the model in a special class of linear magneto-static equilibria. The high spatial resolution of IMaX (110-130 km, pixel size 40 km) enables us to model the non-force-free layer between the photosphere and the mid-chromosphere vertically by about 50 grid points. In our approach we can incorporate some aspects of the mixed beta layer of photosphere and chromosphere, e.g., taking a finite Lorentz force into account, which was not possible with lower-resolution photospheric measurements in the past. The linear model does not, however, permit us to model intrinsic nonlinear structures like strongly localized electric currents.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 the American Astronomical Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Wiegelmann, T.
Neukirch, T.
Nickeler, D. H.
Solanki, S. K.
Barthol, P.
Gandorfer, A.
Gizon, L.
Hirzberger, J.
Riethmüller, T. L.
Noort, M. van
Rodríguez, J. Blanco
Iniesta, J. C. Del Toro
Suárez, D. Orozco
Schmidt, W.
Pillet, V. Martínez
Knölker, Michael
Publisher UCAR/NCAR - Library
Publication Date 2017-03-24T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:12:40.816612
Metadata Record Identifier edu.ucar.opensky::articles:19668
Metadata Language eng; USA
Suggested Citation Wiegelmann, T., Neukirch, T., Nickeler, D. H., Solanki, S. K., Barthol, P., Gandorfer, A., Gizon, L., Hirzberger, J., Riethmüller, T. L., Noort, M. van, Rodríguez, J. Blanco, Iniesta, J. C. Del Toro, Suárez, D. Orozco, Schmidt, W., Pillet, V. Martínez, Knölker, Michael. (2017). Magneto-static modeling from Sunrise/IMaX: Application to an active region observed with Sunrise II. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7xp76rd. Accessed 24 June 2025.

Harvest Source