Making the black box more transparent: Understanding the physical implications of machine learning

This paper synthesizes multiple methods for machine learning (ML) model interpretation and visualization (MIV) focusing on meteorological applications. ML has recently exploded in popularity in many fields, including meteorology. Although ML has been successful in meteorology, it has not been as widely accepted, primarily due to the perception that ML models are "black boxes," meaning the ML methods are thought to take inputs and provide outputs but not to yield physically interpretable information to the user. This paper introduces and demonstrates multiple MIV techniques for both traditional ML and deep learning, to enable meteorologists to understand what ML models have learned. We discuss permutation-based predictor importance, forward and backward selection, saliency maps, class-activation maps, backward optimization, and novelty detection. We apply these methods at multiple spatiotemporal scales to tornado, hail, winter precipitation type, and convective-storm mode. By analyzing such a wide variety of applications, we intend for this work to demystify the black box of ML, offer insight in applying MIV techniques, and serve as a MIV toolbox for meteorologists and other physical scientists.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 American Meteorological Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author McGovern, Amy
Lagerquist, Ryan
John Gagne, David
Jergensen, G. Eli
Elmore, Kimberly L.
Homeyer, Cameron R.
Smith, Travis
Publisher UCAR/NCAR - Library
Publication Date 2019-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:08:10.413046
Metadata Record Identifier edu.ucar.opensky::articles:23015
Metadata Language eng; USA
Suggested Citation McGovern, Amy, Lagerquist, Ryan, John Gagne, David, Jergensen, G. Eli, Elmore, Kimberly L., Homeyer, Cameron R., Smith, Travis. (2019). Making the black box more transparent: Understanding the physical implications of machine learning. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7251nb6. Accessed 25 June 2025.

Harvest Source