Mechanisms behind the Springtime North Pacific ENSO teleconnection bias in climate models

Previous studies have shown that models overestimate the strength of ENSO teleconnections to the North Pacific during springtime, but the underlying reasons for this bias remain unknown. In this work, the relative contributions from basic-state and thermodynamic/dynamic forcing factors are disentangled through idealized experiments with the Community Earth System Model and a range of stationary wave modeling experiments. It is revealed that in CESM1 the diabatic heating biases over the tropical Indian Ocean and tropical central-western Pacific jointly favor a cyclonic (anticyclonic) circulation bias to occur in the North Pacific during the springtime of El Nino (La Nina) events. On one hand, the difference in the modeled and observed climatological basic state does not lead to the bias formation directly, as the diabatic heating biases are the primary cause. On the other hand, the springtime basic state is conducive to a more vigorous stationary wave response to the biased diabatic heating than the wintertime state, and this explains why the teleconnection bias occurs during springtime but not in winter. An iterative bias-correction approach is then implemented in the atmospheric model component of CESM1 to verify the linkage between the tropical diabatic heating bias and the teleconnection bias. Moreover, this explanation is shown to be relevant in other models of phase 5 of the Coupled Model Intercomparison Project (CMIP5) as a strong relationship is found between biases in ENSO-related tropical central-western Pacific/Indian Ocean precipitation and North Pacific circulation across models in spring.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2022 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Chen, Ruyan
Simpson, Isla R.
Deser, Clara
Wang, Bin
Du, Yan
Publisher UCAR/NCAR - Library
Publication Date 2022-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:41:12.955900
Metadata Record Identifier edu.ucar.opensky::articles:26039
Metadata Language eng; USA
Suggested Citation Chen, Ruyan, Simpson, Isla R., Deser, Clara, Wang, Bin, Du, Yan. (2022). Mechanisms behind the Springtime North Pacific ENSO teleconnection bias in climate models. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d74q7zwh. Accessed 24 June 2025.

Harvest Source