Moisture sources for wintertime intense precipitation events over the three snowy subregions of the Tibetan Plateau

Wintertime intense precipitation events often lead to severe snow disasters. In this study, a Lagrangian approach is employed to examine the evaporative moisture sources for wintertime intense precipitation events over the three snowy subregions of the Tibetan Plateau (TP) during 1979-2016, including the western TP (WTP), south central TP (SCTP), and southeastern TP (SETP). More than 80.0% of the moisture for intense precipitation over each subregion originates from terrestrial areas. Although prevailing westerly winds dominate above the TP and its surrounding areas during winter, half of the precipitation over the three subregions is supplied by evaporation from the south (i.e., the Indian Peninsula). Specifically, evaporation from the Indian Peninsula contributes 68.0%, 65.0%, and 45.0% of the moisture for intense precipitation over the WTP, SCTP, and SETP, respectively. The two primary oceanic moisture source regions for intense precipitation are the Arabian Sea and the Bay of Bengal, playing complementary roles in supplying moisture. The relative contributions of the Arabian Sea to intense precipitation over the WTP, SCTP, and SETP are 9.2%, 6.9%, and 1.1%, while those of the Bay of Bengal are 1.1%, 12.1%, and 8.6%. Southerly winds downstream of a cyclonic anomaly over the Indian Peninsula are crucial for the low-level moisture transport from the south to the Himalayan foothills. Under the combined effects of orographic lifting and favorable large-scale circulation patterns, moisture ascends further into the three subregions. Changes in the position and intensity of the cyclonic anomaly are particularly crucial to facilitating moisture contributions from the key source regions.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Qiu, Tianpei
Huang, Wenyu
Wright, Jonathon S.
Lin, Yanluan
Lu, Ping
He, Xinsheng
Yang, Zifan
Dong, Wenhao
Lu, Hui
Wang, Bin
Publisher UCAR/NCAR - Library
Publication Date 2019-12-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:27:45.176699
Metadata Record Identifier edu.ucar.opensky::articles:23107
Metadata Language eng; USA
Suggested Citation Qiu, Tianpei, Huang, Wenyu, Wright, Jonathon S., Lin, Yanluan, Lu, Ping, He, Xinsheng, Yang, Zifan, Dong, Wenhao, Lu, Hui, Wang, Bin. (2019). Moisture sources for wintertime intense precipitation events over the three snowy subregions of the Tibetan Plateau. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7jm2dts. Accessed 30 June 2025.

Harvest Source