On the determination of age of air trends from atmospheric trace species

Trace chemical species have been used in numerical models to calculate the age of air (AOA), which is a measure of the strength of the mean meridional circulation. The trend in the AOA has also been computed and found to be negative in simulations where greenhouse gases increase with time, which is consistent with the acceleration of the mean meridional circulation calculated under these conditions. This modeling result has been tested recently using observations of SF6, a very long lived species whose atmospheric concentration has increased rapidly over the last half century, and of CO2, which is also very long lived and increasing with time. Surprisingly, the AOA estimated from these gases exhibits no significant trend over the period 1975-2005. Here the Whole Atmosphere Community Climate Model (WACCM) is used to derive estimates of the AOA from SF6 and CO₂ over the period 1965-2006. The calculated AOA yields trends that are smaller than the trend derived from a synthetic, linearly growing tracer, even after accounting for the nonlinear growth rates of SF6 and CO₂. A simplified global transport model and analytical arguments are used to show that this follows from the variable growth rate of these species. It is also shown that, when AOA is sampled sparsely as in the observations, the resulting trends have very large error bars and are statistically undistinguishable from zero. These results suggest that trends in the AOA are difficult to estimate unambiguously except for well-sampled tracers that increase linearly and uniformly. While such tracers can be defined in numerical models, there are no naturally occurring species that exhibit such idealized behavior.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2011 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Garcia, Rolando
Randel, William
Kinnison, Douglas
Publisher UCAR/NCAR - Library
Publication Date 2011-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:51:45.721889
Metadata Record Identifier edu.ucar.opensky::articles:10586
Metadata Language eng; USA
Suggested Citation Garcia, Rolando, Randel, William, Kinnison, Douglas. (2011). On the determination of age of air trends from atmospheric trace species. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7nv9jrj. Accessed 29 July 2025.

Harvest Source