Photoelectrons as a tool to evaluate spectral variations in solar EUV irradiance over solar cycle timescales

There is limited information about the relative magnitude of the spectral variations in the ionizing component of solar irradiance on solar cycle timescales. We found that the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED)/Solar Extreme Ultraviolet Experiment (SEE) Version 9 irradiance values predict relatively more ionospheric heating at solar minimum than those from Version 8. These changes have direct impacts on solar cycle timescale variations in ionospheric and thermospheric energy inputs derived from them. Photoelectron observations from the Fast Auroral Snapshot (FAST) satellite obtained from 2002 to 2008 are used with solar irradiance data, photoelectron flux models, and models of solar irradiance to examine the solar cycle variations of irradiance in the 4-27 nm range derived from the XPS sensor in the TIMED/SEE instrument suite. Good (±50%) agreement is found between daily photoelectron observations and model predictions. The largest differences between observed and modeled fluxes are in the 4-10 nm range, where the Fast Auroral Snapshot data show that the SEE Version 9 irradiances are systematically low. Our analysis suggests that variation on solar cycle timescales in the TIMED/SEE Version 9 and Flare Irradiance Spectral Model irradiance derived from them are systematically low in the 18-27 nm region. Because of uncertainties in the absolute value of the observed photoelectron fluxes and solar irradiances, differences between observed and modeled photoelectron fluxes are not sufficient to determine more exactly the magnitude of variation on solar cycle timescales of solar irradiance in the 4-27 nm region. These suggestions can be confirmed by higher spectral resolution observations that will be made on the Solar Dynamics Observatory mission.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

An edited version of this paper was published by AGU. Copyright 2009 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Peterson, W.
Stavros, E.
Richards, P.
Chamberlin, P.
Woods, T.
Bailey, S.
Solomon, Stanley
Publisher UCAR/NCAR - Library
Publication Date 2009-10-13T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:56:52.790101
Metadata Record Identifier edu.ucar.opensky::articles:15235
Metadata Language eng; USA
Suggested Citation Peterson, W., Stavros, E., Richards, P., Chamberlin, P., Woods, T., Bailey, S., Solomon, Stanley. (2009). Photoelectrons as a tool to evaluate spectral variations in solar EUV irradiance over solar cycle timescales. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d71v5fzw. Accessed 21 June 2025.

Harvest Source