Probabilistic machine learning estimation of ocean mixed layer depth from dense satellite and sparse in situ observations

The ocean mixed layer plays an important role in the coupling between the upper ocean and atmosphere across a wide range of time scales. Estimation of the variability of the ocean mixed layer is therefore important for atmosphere-ocean prediction and analysis. The increasing coverage of in situ Argo profile data allows for an increasingly accurate analysis of the mixed layer depth (MLD) variability associated with deviations from the seasonal climatology. However, sampling rates are not sufficient to fully resolve subseasonal (<90 $< 90$ day) MLD variability. Yet, many multivariate observations-based analyses include implicit modeled subseasonal MLD variability. One analysis method is optimal interpolation of in situ data, but the interior analysis can be improved by leveraging surface data with regression or variational approaches. Here, we demonstrate how machine learning methods and satellite sea surface temperature, salinity, and height facilitate MLD estimation in a pilot study of two regions: the mid-latitude southern Indian and the eastern equatorial Pacific Oceans. We construct multiple machine learning architectures to produce weekly 1/2 degrees gridded MLD anomaly fields (relative to a monthly climatology) with uncertainty estimates. We test multiple traditional and probabilistic machine learning techniques to compare both accuracy and probabilistic calibration. We validate our methodology by applying it to ocean model simulations. We find that incorporating sea surface data through a machine learning model improves the performance of spatiotemporal MLD variability estimation compared to optimal interpolation of Argo observations alone. These preliminary results are a promising first step for the application of machine learning to MLD prediction.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Foster, Dallas
Gagne, David John
Whitt, Daniel B.
Publisher UCAR/NCAR - Library
Publication Date 2021-12-30T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:32:59.346718
Metadata Record Identifier edu.ucar.opensky::articles:24996
Metadata Language eng; USA
Suggested Citation Foster, Dallas, Gagne, David John, Whitt, Daniel B.. (2021). Probabilistic machine learning estimation of ocean mixed layer depth from dense satellite and sparse in situ observations. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d72f7rzj. Accessed 24 June 2025.

Harvest Source