Properties of convectively induced turbulence over developing oceanic convection

Convectively induced turbulence (CIT) is an aviation hazard that continues to be a forecasting challenge as operational forecast models are too coarse to resolve turbulence affecting aircraft. In particular, little is known about tropical maritime CIT. In this study, a numerical simulation of a tropical oceanic CIT case where severe turbulence was encountered by a commercial aircraft is performed. The Richardson number (Ri), subgrid-scale eddy dissipation rate (EDR), and second-order structure functions (SF) are used as diagnostics to determine which may be used for CIT related to developing and mature convection. Model-derived subgrid-scale EDR in past studies of midlatitude continental CIT was shown to be a good diagnostic of turbulence but underpredicted turbulence intensity and areal coverage in this tropical simulation. SF diagnosed turbulence with moderate to severe intensity near convection and agreed most with observations. Further, SF were used to diagnose turbulence for developing convection. Results show that the areal coverage of turbulence associated with developing convection is less than mature convection. However, the intensity of turbulence in the vicinity of developing convection is greater than the turbulence intensity in the vicinity of mature convection highlighting developing convection as an additional concern to aviation.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Barber, Katelyn A.
Deierling, Wiebke
Mullendore, Gretchen
Kessinger, Cathy
Sharman, Robert
Muñoz-Esparza, Domingo
Publisher UCAR/NCAR - Library
Publication Date 2019-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:08:36.561087
Metadata Record Identifier edu.ucar.opensky::articles:22816
Metadata Language eng; USA
Suggested Citation Barber, Katelyn A., Deierling, Wiebke, Mullendore, Gretchen, Kessinger, Cathy, Sharman, Robert, Muñoz-Esparza, Domingo. (2019). Properties of convectively induced turbulence over developing oceanic convection. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d77m0c3d. Accessed 27 June 2025.

Harvest Source