Role of abnormally enhanced MJO over the Western Pacific in the formation and subseasonal predictability of the record-breaking northeast Asian heatwave in the summer of 2018

In the summer of 2018, Northeast Asia experienced a heatwave event that broke the existing high-temperature records in several locations in Japan, the Korean Peninsula, and northeastern China. At the same time, an unusually strong Madden-Julian oscillation (MJO) was observed to stay over the western Pacific warm pool. Based on reanalysis diagnosis, numerical experiments, and assessments of real-time forecast data from two subseasonal-to-seasonal (S2S) models, we discovered the importance of the western Pacific MJO in the generation of this heatwave event, as well as its predictability at the sub-seasonal time scale. During the prolonged extreme heat period (11 July-14 August), a high pressure anomaly with variability at the intraseasonal (30-90 days) time scale appeared over Northeast Asia, causing persistent adiabatic heating and clear skies in this region. As shown in the composites of MJO-related convection and circulation anomalies, the occurrence of this 30-90-day high anomaly over Northeast Asia was linked with an anomalous wave train induced by tropical heating associated with the western tropical Pacific MJO. The impact of the MJO on the heatwave was further confirmed by sensitivity experiments with a coupled GCM. As the western Pacific MJO-related components were removed by nudging prognostic variables over the tropics toward their annual cycle and longer time scales (>90 days) in the coupled GCM, the anomalous wave train along the East Asian coast disappeared and the surface air temperature in Northeast Asia lowered. The MJO over the western Pacific warm pool also influenced the predictability of the extratropical heatwave. Our assessments of two S2S models' real-time forecasts suggest that the extremity of this Northeast Asian heatwave can be better predicted 1-4 weeks in advance if the enhancement of MJO convection over the western Pacific warm pool is predicted well.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hsu, Pang-Chi
Qian, Yitian
Liu, Yu
Murakami, Hiroyuki
Gao, Yingxia
Publisher UCAR/NCAR - Library
Publication Date 2020-03-23T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:32:25.126709
Metadata Record Identifier edu.ucar.opensky::articles:23624
Metadata Language eng; USA
Suggested Citation Hsu, Pang-Chi, Qian, Yitian, Liu, Yu, Murakami, Hiroyuki, Gao, Yingxia. (2020). Role of abnormally enhanced MJO over the Western Pacific in the formation and subseasonal predictability of the record-breaking northeast Asian heatwave in the summer of 2018. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d70p139p. Accessed 29 June 2025.

Harvest Source