Seasonal prediction potential for springtime dustiness in the United States

Most dust forecast models focus on short, subseasonal lead times, that is, 3 to 6 days, and the skill of seasonal prediction is not clear. In this study we examine the potential of seasonal dust prediction in the United States using an observation-constrained regression model and key variables predicted by a seasonal prediction model developed at National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Forecast-Oriented Low Ocean Resolution (FLOR) model. Our method shows skillful predictions of spring dustiness 3 to 6 months in advance. It is found that the regression model explains about 71% of the variances of dust event frequency over the Great Plains and 63% over the southwestern United States in March-May from 2004 to 2016 using predictors from FLOR initialized on 1 December. Variations in springtime dustiness are dominated by springtime climatic factors rather than wintertime factors. Findings here will help development of a seasonal dust prediction system and hazard prevention.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Pu, Bing
Ginoux, Paul
Kapnick, Sarah B.
Yang, Xiaosong
Publisher UCAR/NCAR - Library
Publication Date 2019-08-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:24:16.457215
Metadata Record Identifier edu.ucar.opensky::articles:22807
Metadata Language eng; USA
Suggested Citation Pu, Bing, Ginoux, Paul, Kapnick, Sarah B., Yang, Xiaosong. (2019). Seasonal prediction potential for springtime dustiness in the United States. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7ms3wvr. Accessed 28 June 2025.

Harvest Source