Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup

This paper describes idealized simulations of a squall line observed on 20 June 2007, in central Oklahoma. Results are compared with measurements from dual-polarization radar and surface disdrometer. The baseline model configuration qualitatively reproduces key storm features, but underpredicts precipitation rates and generally overpredicts median volume raindrop diameter. The sensitivity of model simulations to parameterization of raindrop breakup is tested under different low-level (0 -2.5 km) environmental vertical wind shears. Storm characteristics exhibit considerable sensitivity to the parameterization of breakup, especially for moderate (0.0048 s⁻¹) shear. Simulations with more efficient breakup tend to have higher domain-mean precipitation rates under both moderate and higher (0.0064 s⁻¹) shear, despite the smaller mean drop size and hence lower mass-weighted fall speed and higher evaporation rate for a given rainwater content. In these runs, higher evaporation leads to stronger cold pools, faster propagation, larger storm size, greater updraft mass flux (but weaker convective updrafts at mid- and upper levels), and greater total condensation that compensates for the increased evaporation to give more surface precipitation. The impact of drop breakup on mass-weighted fall speed is also important and leads to a nonmonotonic response of storm characteristics (surface precipitation, cold pool strength, etc.) to changes in breakup efficiency under moderate wind shear. In contrast, the response is generally monotonic at higher wind shear. Interactions between drop breakup, convective dynamics, cold pool intensity, and low-level environmental wind shear are also described in the context of "Rotunno-Klemp-Weisman (RKW) theory," which addresses how density currents evolve in sheared environments.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Morrison, Hugh
Tessendorf, Sarah
Ikeda, Kyoko
Thompson, Gregory
Publisher UCAR/NCAR - Library
Publication Date 2012-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:53:27.217717
Metadata Record Identifier edu.ucar.opensky::articles:12185
Metadata Language eng; USA
Suggested Citation Morrison, Hugh, Tessendorf, Sarah, Ikeda, Kyoko, Thompson, Gregory. (2012). Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7154hs6. Accessed 30 June 2025.

Harvest Source