Sensitivity of limited-area hybrid variational-ensemble analyses and forecasts to ensemble perturbation resolution

Dual-resolution (DR) hybrid variational-ensemble analysis capability was implemented within the community Weather Research and Forecasting (WRF) Model data assimilation (DA) system, which is designed for limited-area applications. The DR hybrid system combines a high-resolution (HR) background, flow-dependent background error covariances (BECs) derived from a low-resolution ensemble, and observations to produce a deterministic HR analysis. As DR systems do not require HR ensembles, they are computationally cheaper than single-resolution (SR) hybrid configurations, where the background and ensemble have equal resolutions. Single-observation tests were performed to document some characteristics of limited-area DR hybrid analyses. Additionally, the DR hybrid system was evaluated within a continuously cycling framework, where new DR hybrid analyses were produced every 6 h over ~3.5 weeks. In the DR configuration presented here, the deterministic backgrounds and analyses had 15-km horizontal grid spacing, but the 32-member WRF Mode--based ensembles providing flow-dependent BECs for the hybrid had 45-km horizontal grid spacing. The DR hybrid analyses initialized 72-h WRF Model forecasts that were compared to forecasts initialized by an SR hybrid system where both the ensemble and background had 15-km horizontal grid spacing. The SR and DR hybrid systems were coupled to an ensemble adjustment Kalman filter that updated ensembles each DA cycle. On average, forecasts initialized from 15-km DR and SR hybrid analyses were not statistically significantly different, although tropical cyclone track forecast errors favored the SR-initialized forecasts. Although additional studies over longer time periods and at finer grid spacing are needed to further understand sensitivity to ensemble perturbation resolution, these results suggest users should carefully consider whether SR hybrid systems are worth the extra cost.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Schwartz, Craig
Liu, Zhiquan
Huang, Xiang-Yu
Publisher UCAR/NCAR - Library
Publication Date 2015-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:05:14.305694
Metadata Record Identifier edu.ucar.opensky::articles:16881
Metadata Language eng; USA
Suggested Citation Schwartz, Craig, Liu, Zhiquan, Huang, Xiang-Yu. (2015). Sensitivity of limited-area hybrid variational-ensemble analyses and forecasts to ensemble perturbation resolution. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7cn7535. Accessed 24 June 2025.

Harvest Source