Simulating the IHOP_2002 fair-weather CBL with the WRF-ARW-Noah modeling system. Part II: Structures from a few kilometers to 100 km across

Fair-weather data along the May–June 2002 International H₂O Project (IHOP_2002) eastern track and the nearby Argonne Boundary Layer Experiments (ABLE) facility in southeast Kansas are compared to numerical simulations to gain insight into how the surface influences convective boundary layer (CBL) structure, and to evaluate the success of the modeling system in replicating the observed behavior. Simulations are conducted for 4 days, using the Advanced Research version of the Weather Research and Forecasting (WRF)model coupled to the Noah land surface model (LSM), initialized using the High-Resolution Land Data Assimilation System (HRLDAS). Because the observations focus on phenomena less than 60 km in scale, the model is run with 1-km grid spacing, offering a critical look at High-resolution model behavior in an environment uncomplicated by precipitation. The model replicates the type of CBL structure on scales from a few kilometers to ~100 km, but some features at the kilometer scales depend on the grid spacing.Mesoscale (tens of kilometers) circulations were clearly evident on 2 of the 4 days (30 May and 20 June), clearly not evident on 1 day (22 June), with the situation for the fourth day (17 June) ambiguous. Both observed and modeled surface-heterogeneitygenerated mesoscale circulations are evident for 30 May. On the other hand, 20 June satellite images show north-northwest–south-southeast cloud streets (rolls) modulated longitudinally, presumably by tropospheric gravity waves oriented normal to the roll axis, creating northeast–southwest ridges and valleys spaced 50–100 km apart. Modeled cloud streets showed similar longitudinal modulation, with the associated two-dimensional structure having maximum amplitude above the CBL and no relationship to the CBL temperature distribution; although there were patches of mesoscale vertical velocity correlated with CBL temperature. On 22 June, convective rolls were the dominant structure in both model and observations. For the 3 days for which satellite images show cloud streets,WRF produces rollswith the right orientation and wavelength, which grows with CBL depth. Modeled roll structures appeared for the range of CBL depth to Obukhov length ratios (-Zi/L) associated with rolls. However, sensitivity tests show that the roll wavelength is also related to the grid spacing, and the modeled convection becomes more cellular with smaller grid spacing.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author LeMone, Margaret
Chen, Fei
Tewari, Mukul
Dudhia, Jimy
Geerts, Bart
Miao, Qun
Coulter, Richard
Grossman, Robert
Publisher UCAR/NCAR - Library
Publication Date 2010-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:58:33.019847
Metadata Record Identifier edu.ucar.opensky::articles:17077
Metadata Language eng; USA
Suggested Citation LeMone, Margaret, Chen, Fei, Tewari, Mukul, Dudhia, Jimy, Geerts, Bart, Miao, Qun, Coulter, Richard, Grossman, Robert. (2010). Simulating the IHOP_2002 fair-weather CBL with the WRF-ARW-Noah modeling system. Part II: Structures from a few kilometers to 100 km across. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7057h6d. Accessed 22 June 2025.

Harvest Source