Southern ocean calcification controls the global distribution of alkalinity

Biological processes in Southern Ocean surface waters have widespread impacts on global productivity and oceanic CO2 storage. Here, we demonstrate that biological calcification in the Southern Ocean exerts a strong control on the global distribution of alkalinity. The signature of Southern Ocean calcification is evident in observations as a depletion of potential alkalinity within portions of Subantarctic Mode and Intermediate Water. Experiments with an ocean general circulation model indicate that calcification and subsequent sinking of biogenic carbonate in this region effectively transfers alkalinity between the upper and lower cells of the meridional overturning circulation. Southern Ocean calcification traps alkalinity in the deep ocean; decreasing calcification permits more alkalinity to leak out from the Southern Ocean, yielding increased alkalinity in the upper cell and low-latitude surface waters. These processes have implications for atmosphere-ocean partitioning of carbon. Reductions in Southern Ocean calcification increase the buffer capacity of surface waters globally, thereby enhancing the ocean's ability to absorb carbon from the atmosphere. This study highlights the critical role of Southern Ocean calcification in determining global alkalinity distributions, demonstrating that changes in this process have the potential for widespread consequences impacting air-sea partitioning of CO2.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Krumhardt, Kristen M.
Long, Matthew C.
Lindsay, Keith
Levy, Michael N.
Publisher UCAR/NCAR - Library
Publication Date 2020-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:32:33.475463
Metadata Record Identifier edu.ucar.opensky::articles:23948
Metadata Language eng; USA
Suggested Citation Krumhardt, Kristen M., Long, Matthew C., Lindsay, Keith, Levy, Michael N.. (2020). Southern ocean calcification controls the global distribution of alkalinity. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7222z34. Accessed 22 June 2025.

Harvest Source