Statistical assessment of tropical convection-permitting model simulations using a cell-tracking algorithm

This study presents a method for comparing convection-permitting model simulations to radar observations using an innovative object-based approach. The method uses the automated cell-tracking algorithm, Thunderstorm Identification Tracking Analysis and Nowcasting (TITAN), to identify individual convective cells and determine their properties. Cell properties are identified in the same way for model and radar data, facilitating comparison of their statistical distributions. The method is applied to simulations of tropical convection during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) using the Weather Research and Forecasting Model, and compared to data from a ground-based radar. Simulations with different microphysics and model resolution are also conducted. Among other things, the comparisons between the model and the radar elucidate model errors in the depth and size of convective cells. On average, simulated convective cells reached higher altitudes than the observations. Also, when using a low reflectivity (25 dBZ) threshold to define convective cells, the model underestimates the size of the largest cells in the observed population. Some of these differences are alleviated with a change of microphysics scheme and higher model resolution, demonstrating the utility of this method for assessing model changes.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Caine, Simon
Lane, Todd
May, Peter
Jakob, Christian
Siems, Steven
Manton, Michael
Pinto, James
Publisher UCAR/NCAR - Library
Publication Date 2013-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:49:30.894971
Metadata Record Identifier edu.ucar.opensky::articles:12527
Metadata Language eng; USA
Suggested Citation Caine, Simon, Lane, Todd, May, Peter, Jakob, Christian, Siems, Steven, Manton, Michael, Pinto, James. (2013). Statistical assessment of tropical convection-permitting model simulations using a cell-tracking algorithm. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d74f1rjh. Accessed 25 June 2025.

Harvest Source