The influence of assimilated upstream, preconvective dropsonde observations on ensemble forecasts of convection initiation during the Mesoscale Predictability Experiment

This study tests the hypothesis that assimilating mid-to upper-tropospheric, meso-a-to synoptic-scale observations collected in upstream, preconvective environments is insufficient to improve short-range ensemble convection initiation (CI) forecast skill over the set of cases considered by the 2013 Mesoscale Predictability Experiment (MPEX) because of a limited influence upon the lower-tropospheric phenomena that modulate CI occurrence, timing, and location. The ensemble Kalman filter implementation within the Data Assimilation Research Testbed as coupled to the Advanced Research Weather Research and Forecasting (WRF) Model is used to initialize two nearly identical 30-member ensembles of short-range forecasts for each case: one initial condition set that incorporates MPEX dropsonde observations and one that excludes these observations. All forecasts for a given mission begin at 1500 UTC and are integrated for 15 h on a convection-permitting grid encompassing much of the conterminous United States. Forecast verification is conducted probabilistically using fractions skill score and deterministically using a 2 x 2 contingency table approach at multiple neighborhood sizes and spatiotemporal event-matching thresholds to assess forecast skill and support hypothesis testing. The probabilistic verification represents the first of its kind for numerical CI forecasts. Forecasts without MPEX observations have high fractions skill score and probabilities of detection on the meso-a scale but exhibit a considerable high bias for forecast CI event count. Assimilating MPEX observations has a negligible impact upon forecast skill for the cases considered, independent of verification metric, as the MPEX observations result in only subtle differences primarily manifest in the position and intensity of atmospheric features responsible for focusing and/or triggering deep, moist convection.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Keclik, Alexandra M.
Evans, Clark
Roebber, Paul J.
Romine, Glen S.
Publisher UCAR/NCAR - Library
Publication Date 2017-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:22:48.972402
Metadata Record Identifier edu.ucar.opensky::articles:21606
Metadata Language eng; USA
Suggested Citation Keclik, Alexandra M., Evans, Clark, Roebber, Paul J., Romine, Glen S.. (2017). The influence of assimilated upstream, preconvective dropsonde observations on ensemble forecasts of convection initiation during the Mesoscale Predictability Experiment. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7fb55n3. Accessed 29 July 2025.

Harvest Source