Toward unifying short-term and next-day convection-allowing ensemble forecast systems with a continuously cycling 3-km ensemble Kalman filter over the entire conterminous United States

Using the Weather Research and Forecasting Model, 80-member ensemble Kalman filter (EnKF) analyses with 3-km horizontal grid spacing were produced over the entire conterminous United States (CONUS) for 4 weeks using 1-h continuous cycling. For comparison, similarly configured EnKF analyses with 15-km horizontal grid spacing were also produced. At 0000 UTC, 15- and 3-km EnKF analyses initialized 36-h, 3-km, 10-member ensemble forecasts that were verified with a focus on precipitation. Additionally, forecasts were initialized from operational Global Ensemble Forecast System (GEFS) initial conditions (ICs) and experimental "blended" ICs produced by combining large scales from GEFS ICs with small scales from EnKF analyses using a low-pass filter. The EnKFs had stable climates with generally small biases, and precipitation forecasts initialized from 3-km EnKF analyses were more skillful and reliable than those initialized from downscaled GEFS and 15-km EnKF ICs through 12-18 and 6-12 h, respectively. Conversely, after 18 h, GEFS-initialized precipitation forecasts were better than EnKF-initialized precipitation forecasts. Blended 3-km ICs reflected the respective strengths of both GEFS and high-resolution EnKF ICs and yielded the best performance considering all times: blended 3-km ICs led to short-term forecasts with similar or better skill and reliability than those initialized from unblended 3-km EnKF analyses and similar to 18-36-h forecasts possessing comparable quality as GEFS-initialized forecasts. This work likely represents the first time a convection-allowing EnKF has been continuously cycled over a region as large as the entire CONUS, and results suggest blending high-resolution EnKF analyses with low-resolution global fields can potentially unify short-term and next-day convection-allowing ensemble forecast systems under a common framework.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2021 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Schwartz, Craig S.
Romine, Glen S.
Dowell, David C.
Publisher UCAR/NCAR - Library
Publication Date 2021-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:24:57.356749
Metadata Record Identifier edu.ucar.opensky::articles:24335
Metadata Language eng; USA
Suggested Citation Schwartz, Craig S., Romine, Glen S., Dowell, David C.. (2021). Toward unifying short-term and next-day convection-allowing ensemble forecast systems with a continuously cycling 3-km ensemble Kalman filter over the entire conterminous United States. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7sf30j2. Accessed 19 July 2025.

Harvest Source