Upper atmosphere radiance data assimilation: A feasibility study for GOLD far ultraviolet observations

Far ultraviolet observations of Earth's dayglow from the National Aeronautics and Space Administration (NASA) Global-scale Observations of the Limb and Disk (GOLD) mission presents an unparalleled opportunity for upper atmosphere radiance data assimilation. Assimilation of the Lyman-Birge-Hopfield (LBH) band emissions can be formulated in a similar fashion to lower atmosphere radiance data assimilation approaches. To provide a proof-of-concept for such an approach, this paper presents assimilation experiments of simulated LBH emission data using an ensemble filter measurement update step implemented with National Oceanic and Atmospheric Administration (NOAA)'s Whole Atmosphere Model (WAM) and National Center for Atmospheric Research (NCAR)'s Global Airglow (GLOW) model. Primary findings from observing system simulation experiments (OSSEs), wherein "truth" atmospheric conditions simulated by NCAR's Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM) are used to generate synthetic GOLD data, are as follows: (1) Assimilation of GOLD LBH disk emission data can reduce the bias in model temperature specification (ensemble mean) by 60% under both geomagnetically quiet conditions and disturbed conditions. (2) The reduction in model uncertainty (ensemble spread) as a result of assimilation is about 20% in the lower thermosphere and 30% in the upper thermosphere for both conditions. These OSSEs demonstrate the potential for far ultraviolet radiance data assimilation to dramatically reduce the model biases in thermospheric temperature specification and to extend the utility of GOLD observations by helping to resolve the altitude-dependent global-scale response of the thermosphere to geomagnetic storms.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Cantrall, Clayton E.
Matsuo, Tomoko
Solomon, Stanley C.
Publisher UCAR/NCAR - Library
Publication Date 2019-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:09:49.944879
Metadata Record Identifier edu.ucar.opensky::articles:23271
Metadata Language eng; USA
Suggested Citation Cantrall, Clayton E., Matsuo, Tomoko, Solomon, Stanley C.. (2019). Upper atmosphere radiance data assimilation: A feasibility study for GOLD far ultraviolet observations. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7ff3wk5. Accessed 27 June 2025.

Harvest Source