Using the artificial tracer e90 to examine present and future UTLS tracer transport in WACCM

Large-scale tracer transport in the upper troposphere and lower stratosphere (UTLS) is investigated using simulations of the Whole Atmosphere Community Climate Model (WACCM) over the period 1955-2099. The analyses are based on e90, an artificial passive tracer with constant emissions and atmospheric loss rates. The separate contributions of advection by the residual circulation, eddy mixing, and subgrid convection to total transport are explicitly evaluated. The results highlight distinct large-scale transport regimes in the tropics, characterized by efficient vertical tracer transport, and the extratropics, dominated by isentropic mixing. One novel result is the important role of vertical eddy mixing in the tropical upper troposphere. It is shown that interannual variability in e90 is largely driven by El Niño–Southern Oscillation and the quasi-biennial oscillation. The long-term trends emphasize a strong impact of a rising tropopause with climate change on UTLS dynamics and tracer transport. The analyses directly attribute the e90 trends to changes in the different transport components. Stronger residual circulation in the future leads to increased tracer concentrations in the tropical lower stratosphere. Enhanced eddy mixing increases e90 in the extratropical lowermost stratosphere, linked to an upward shift of wave dissipation tied to the tropopause rise. In the troposphere, reduced concentrations in the future are due to weaker convective transport out of the boundary layer and weaker extratropical isentropic eddy mixing.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Abalos, Marta
Randel, William J.
Kinnison, Douglas E.
Garcia, Rolando R.
Publisher UCAR/NCAR - Library
Publication Date 2017-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:16:50.731311
Metadata Record Identifier edu.ucar.opensky::articles:21065
Metadata Language eng; USA
Suggested Citation Abalos, Marta, Randel, William J., Kinnison, Douglas E., Garcia, Rolando R.. (2017). Using the artificial tracer e90 to examine present and future UTLS tracer transport in WACCM. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d74x5bb6. Accessed 25 June 2025.

Harvest Source