Validation of mountain precipitation forecasts from the convection-permitting NCAR ensemble and operational forecast systems over the Western United States

Convection-permitting ensembles can capture the large spatial variability and quantify the inherent uncertainty of precipitation in areas of complex terrain; however, such systems remain largely untested over the western United States. In this study, we assess the capabilities of deterministic and probabilistic cool-season quantitative precipitation forecasts (QPFs) produced by the 10-member, convection-permitting (3-km horizontal grid spacing) NCAR Ensemble using observations collected by SNOTEL stations at mountain locations across the western United States and precipitation analyses from PRISM. We also examine the performance of operational forecast systems run by NCEP including the High Resolution Rapid Refresh (HRRR) model, the NAM forecast system with a 3-km continental United States (CONUS) nest, GFS, and the Short-Range Ensemble Forecast system (SREF). Overall, we find that higher-resolution models, such as the HRRR, NAM-3km CONUS nest, and an individual member of the NCAR Ensemble, are more deterministically skillful than coarser models, especially over the narrow interior ranges of the western United States, likely because they better resolve topography and thus better simulate orographic precipitation. The 10-member NCAR Ensemble is also more probabilistically skillful than 13-member subensembles composed of each SREF dynamical core, but less probabilistically skillful than the full 26-member SREF, as a result of insufficient spread. These results should help guide future short-range model development and inform forecasters about the capabilities and limitations of several widely used deterministic and probabilistic modeling systems over the western United States.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Gowan, Thomas M.
Steenburgh, W. James
Schwartz, Craig S.
Publisher UCAR/NCAR - Library
Publication Date 2018-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:17:57.153369
Metadata Record Identifier edu.ucar.opensky::articles:21791
Metadata Language eng; USA
Suggested Citation Gowan, Thomas M., Steenburgh, W. James, Schwartz, Craig S.. (2018). Validation of mountain precipitation forecasts from the convection-permitting NCAR ensemble and operational forecast systems over the Western United States. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7hx1ggj. Accessed 19 June 2025.

Harvest Source