A Lagrangian model diagnosis of stratospheric contributions to tropical midtropospheric air

Airborne in situ observations during the Convective Transport of Active Species in the Tropics campaign in January-February 2014 revealed a large region over the tropical western Pacific where the midtroposphere had a layered structure with a distinct chemical signature of high ozone and low water vapor (HOLW). The observed anticorrelation between ozone and water vapor is a strong indication of transport from the midlatitude upper troposphere and lower stratosphere. This work presents a diagnosis of stratospheric air in the tropical western Pacific midtroposphere through isentropic transport and mixing.Using the Chemical Lagrangian Model of the Stratosphere, we characterize and quantify the contribution of transported stratospheric air to the observed HOLW layers. The result indicates that the isentropic transport is an effective process for stratospheric air to mix into the tropical midtroposphere. Using the modeled stratospheric tracer and 3-D back trajectories, we identified that 60% of the observed HOLW air masses contain significant stratospheric influence. We have also examined possible contribution to the HOLW layer from ozone production related to biomass burning emissions. Clear chemical signature of this process is found in∼8% of the HOLW air masses, identified by positive correlations among O3, HCN, and CO. This analysis provides the first quantitative diagnosis of the contribution from the stratosphere-to-troposphere transport, highlights the importance of mixing in chemical transport, and demonstrates the limitations of pure Lagrangian trajectory calculations in quantifying transport.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Tao, M.
Pan, Laura L.
Konopka, P.
Honomichl, Shawn B.
Kinnison, Douglas E.
Apel, Eric C.
Publisher UCAR/NCAR - Library
Publication Date 2018-09-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:22:12.631547
Metadata Record Identifier edu.ucar.opensky::articles:21970
Metadata Language eng; USA
Suggested Citation Tao, M., Pan, Laura L., Konopka, P., Honomichl, Shawn B., Kinnison, Douglas E., Apel, Eric C.. (2018). A Lagrangian model diagnosis of stratospheric contributions to tropical midtropospheric air. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7fx7dbk. Accessed 19 June 2025.

Harvest Source