Does organization in turbulence influence ozone removal by deciduous forests?

Dry deposition is an important sink of tropospheric ozone and influences background and episodic ozone air pollution. Plant canopies remove ozone through uptake by plant stomata, leaf cuticles, and soil. Stomatal uptake of ozone injures vegetation, thereby altering local-to-global water and carbon cycling. Observed ozone fluxes are used to inform dry deposition parameterizations in chemical transport models but represent the net influence of several poorly constrained processes. Advancing understanding of the processes controlling dry deposition is key for building predictive ability of the terrestrial ozone sink and plant damage. Here, we constrain the influence of spatial structure in turbulence on ozone dry deposition with large eddy simulation coupled to a multilayer canopy model. We investigate whether organized turbulence separates areas of efficient leaf uptake from areas of high or low ozone mixing ratios. We simulate summertime midday conditions at three homogenous deciduous forests with varying leaf area, soil moisture, and ambient humidity. Sensitivity simulations perturb atmospheric stability, parameters related to ozone dry deposition, how quickly stomata respond to local atmospheric variations, and entrainment of ozone from atmospheric boundary layer growth. Overall, we find a low covariance between ozone and leaf uptake, in part due to counteracting influences from micrometeorological variations on ozone and leaf uptake individually versus the influence of leaf uptake on ozone. The low covariance between ozone and leaf uptake suggests that dry deposition parameterizations and interpretations of ozone flux observations can ignore the influence of organized turbulence on dry deposition.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : Datasets used in "Does Organization in Turbulence Influence Ozone Removal by Deciduous Forests?"

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2021 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Clifton, Olivia E.
Patton, Edward G.
Publisher UCAR/NCAR - Library
Publication Date 2021-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T16:14:55.214721
Metadata Record Identifier edu.ucar.opensky::articles:24518
Metadata Language eng; USA
Suggested Citation Clifton, Olivia E., Patton, Edward G.. (2021). Does organization in turbulence influence ozone removal by deciduous forests?. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7t43xgj. Accessed 03 August 2025.

Harvest Source