Empirical localization of observation impact in ensemble Kalman filters

Localization is a method for reducing the impact of sampling errors in ensemble Kalman filters. Here, the regression coefficient, or gain, relating ensemble increments for observed quantity y to increments for state variable x is multiplied by a real number α defined as a localization. Localization of the impact of observations on model state variables is required for good performance when applying ensemble data assimilation to large atmospheric and oceanic problems. Localization also improves performance in idealized low-order ensemble assimilation applications. An algorithm that computes localization from the output of an ensemble observing system simulation experiment (OSSE) is described. The algorithm produces localizations for sets of pairs of observations and state variables: for instance, all state variables that are between 300- and 400-km horizontal distance from an observation. The algorithm is applied in a low-order model to produce localizations from the output of an OSSE and the computed localizations are then used in a new OSSE. Results are compared to assimilations using tuned localizations that are approximately Gaussian functions of the distance between an observation and a state variable. In most cases, the empirically computed localizations produce the lowest root-mean-square errors in subsequent OSSEs. Localizations derived from OSSE output can provide guidance for localization in real assimilation experiments. Applying the algorithm in large geophysical applications may help to tune localization for improved ensemble filter performance.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Anderson, Jeffrey L.
Lei, Lili
Publisher UCAR/NCAR - Library
Publication Date 2013-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-12T01:15:16.699489
Metadata Record Identifier edu.ucar.opensky::articles:13088
Metadata Language eng; USA
Suggested Citation Anderson, Jeffrey L., Lei, Lili. (2013). Empirical localization of observation impact in ensemble Kalman filters. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7ng4rjn. Accessed 02 August 2025.

Harvest Source