Ion-neutral coupling effects on low-latitude thermospheric evening winds

We examine the forces that determine zonal wind structure in the low-latitude evening thermosphere and its relation with ion-neutral coupling. These winds drive the evening F region dynamo that affects the equatorial ionization anomaly (EIA) and the generation of plasma irregularities. Forces are calculated using the Thermosphere-Ionosphere-Electrodynamics General Circulation Model coupled with the Global Ionosphere-Plasmasphere model. At 19 LT, the horizontal pressure gradient dominates the net acceleration of neutral winds below ∼220 km, while it tends to be offset by ion drag and viscosity higher up. The eastward pressure-gradient acceleration above 200 km increases approximately linearly with height and tends to be similar for different latitudes and different levels of solar activity. The pressure-gradient and ion-drag forces in the central F region approximately balance for field lines that pass through the EIA. Viscosity is an important additional force at non-EIA latitudes and in the bottomside and topside EIA ionosphere. An increase in E region drag on plasma convection due to increased nighttime ionization causes both the ion and neutral velocities in the F region to decrease, while the velocity difference tends to be maintained. The presence of a low-latitude evening time vertical shear in the zonal wind is associated primarily with a strong eastward pressure-gradient acceleration at high altitude that reverses the daytime westward wind and a weak low-altitude pressure-gradient acceleration of either eastward or westward direction that fails to reverse the low-altitude westward wind present in the afternoon.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Evonosky, W.
Richmond, Arthur
Fang, T.-W.
Maute, Astrid
Publisher UCAR/NCAR - Library
Publication Date 2016-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:02:47.905541
Metadata Record Identifier edu.ucar.opensky::articles:18643
Metadata Language eng; USA
Suggested Citation Evonosky, W., Richmond, Arthur, Fang, T.-W., Maute, Astrid. (2016). Ion-neutral coupling effects on low-latitude thermospheric evening winds. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7g73gd6. Accessed 18 June 2025.

Harvest Source