Machine learning uncovers aerosol size information from chemistry and meteorology to quantify potential cloud‐forming particles
To Access Resource:
Questions? Email Resource Support Contact:
-
opensky@ucar.edu
UCAR/NCAR - Library
Resource Type | publication |
---|---|
Temporal Range Begin | N/A |
Temporal Range End | N/A |
Temporal Resolution | N/A |
Bounding Box North Lat | N/A |
Bounding Box South Lat | N/A |
Bounding Box West Long | N/A |
Bounding Box East Long | N/A |
Spatial Representation | N/A |
Spatial Resolution | N/A |
Related Links | N/A |
Additional Information | N/A |
Resource Format |
PDF |
Standardized Resource Format |
PDF |
Asset Size | N/A |
Legal Constraints |
Copyright 2021 American Geophysical Union. |
Access Constraints |
None |
Software Implementation Language | N/A |
Resource Support Name | N/A |
---|---|
Resource Support Email | opensky@ucar.edu |
Resource Support Organization | UCAR/NCAR - Library |
Distributor | N/A |
Metadata Contact Name | N/A |
Metadata Contact Email | opensky@ucar.edu |
Metadata Contact Organization | UCAR/NCAR - Library |
Author |
Nair, Arshad Arjunan Yu, Fangqun Campuzano‐Jost, Pedro DeMott, Paul J. |
---|---|
Publisher |
UCAR/NCAR - Library |
Publication Date | 2021-11-16T00:00:00 |
Digital Object Identifier (DOI) | Not Assigned |
Alternate Identifier | N/A |
Resource Version | N/A |
Topic Category |
geoscientificInformation |
Progress | N/A |
Metadata Date | 2023-08-18T18:17:20.579152 |
Metadata Record Identifier | edu.ucar.opensky::articles:24922 |
Metadata Language | eng; USA |
Suggested Citation | Nair, Arshad Arjunan, Yu, Fangqun, Campuzano‐Jost, Pedro, DeMott, Paul J., Levin, Ezra J. T., Jimenez, Jose L., Peischl, Jeff, Pollack, Ilana B., Fredrickson, Carley D., Beyersdorf, Andreas J., Nault, Benjamin A., Park, Minsu, Yum, Seong Soo, Palm, Brett B., Xu, Lu, Bourgeois, Ilann, Anderson, Bruce E., Nenes, Athanasios, Ziemba, Luke D., Moore, Richard H., Lee, Taehyoung, Park, Taehyun, Thompson, Chelsea R., Flocke, Frank, Huey, Lewis Gregory, Kim, Michelle J., Peng, Qiaoyun. (2021). Machine learning uncovers aerosol size information from chemistry and meteorology to quantify potential cloud‐forming particles. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d79c71wf. Accessed 19 June 2025. |
Harvest Source
- ISO-19139 ISO-19139 Metadata