Modeled and observed equatorial thermospheric winds and temperatures

Thermospheric winds and temperatures must be correctly specified to understand the impacts of lower atmosphere processes on the upper atmosphere and to measure the global effects of high-latitude magnetospheric processes. Fabry-Perot interferometers can estimate these parameters by measuring the characteristic 630.0 nm emission that is produced at around 250 km altitude. These sophisticated instruments exist at only a few locations globally, so models are often employed to provide wind and temperature estimates elsewhere. This study is composed of two parts. First, observing system simulation experiments estimate the accuracy of Fabry-Perot interferometer observations using the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) and the Whole Atmosphere Community Climate Model eXtended (WACCM-X). Atmospheric observational error sources are found to be very small across two test periods (September 2000 and September 2010) and using two different "truth" models. The largest magnitude wind observation error is found to be 16.9 m/s, root-mean-square errors are 2.3 m/s, and the bias is 0.9 m/s. The largest-magnitude temperature observation error is found to be 63.7 K, root-mean-square errors over the test period are 6.7 K, and the bias is 2.8 K. Modeled redline emission altitudes vary by over 100 km, far more than was expected. Second, several models (TIEGCM, WACCM-X, the Horizontal Wind Model, and the Mass Spectrometer Incoherent Scatter model) are assessed using interferometer winds and temperatures from Cariri and Cajazeiras, Brazil, as ground truth. In the best cases, the models reproduce wind variability without systematic biases but show no ability to predict instantaneous values, although temperatures are modeled more accurately.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Chartier, A.
Makela, J.
Liu, Hanli
Bust, G.
Noto, J.
Publisher UCAR/NCAR - Library
Publication Date 2015-07-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T22:40:16.005569
Metadata Record Identifier edu.ucar.opensky::articles:16901
Metadata Language eng; USA
Suggested Citation Chartier, A., Makela, J., Liu, Hanli, Bust, G., Noto, J.. (2015). Modeled and observed equatorial thermospheric winds and temperatures. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7sq91kz. Accessed 02 August 2025.

Harvest Source