NOx production due to energetic particle precipitation in the MLT region: Results from ion chemistry model studies

Production of neutral species such as NOx(N, NO, and NO2) during particle-induced ionization events plays an important role in the chemistry of the mesosphere and lower thermosphere (MLT) region, especially in high latitudes. The effective production rate of NOx is composed of the direct production in reactions associated with the ionization or dissociation process and of indirect production during subsequent ionic reactions and recombination. A state of the art ion chemistry model is used to study the dependence of the effective production rate of NOx on several atmospheric parameters such as density, temperature, and abundance of atmospheric constituents and trace gases. The resulting effective production rates vary significantly, depending on the atmospheric state, and reach values between 1.2 NOx per ion pair in the lower mesosphere and 1.9 NOx per ion pair in the lower thermosphere. In this paper, an alternative approach to obtain realistic NOx production rates without running a full ion chemistry model is discussed; a database setup and readout system is used to replace ion chemistry calculations. It is compared to the full ion chemistry model and to a thermospheric reduced ion chemistry model combined with constant rate estimation below the mesopause. Database readout performs better than the constant estimate at all altitudes, where above 100km reduced ion chemistry better reproduces full ion chemistry, but database readout performs better in terms of numerical cost.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Nieder, H.
Winkler, H.
Marsh, Daniel
Sinnhuber, M.
Publisher UCAR/NCAR - Library
Publication Date 2014-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-12T00:10:11.652892
Metadata Record Identifier edu.ucar.opensky::articles:13333
Metadata Language eng; USA
Suggested Citation Nieder, H., Winkler, H., Marsh, Daniel, Sinnhuber, M.. (2014). NOx production due to energetic particle precipitation in the MLT region: Results from ion chemistry model studies. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d70g3m3w. Accessed 31 July 2025.

Harvest Source