Regional energy and water cycles: Transports from ocean to land

The flows of energy and water from ocean to land are examined in the context of the land energy and water budgets, for land as a whole and for continents. Most atmospheric reanalyses have large errors of up to 15 W m⁻² in the top-of-atmosphere (TOA) energy imbalance, and none include volcanic eruptions. The flow of energy from ocean to land is more reliable as it relies on analyzed wind, temperature, and moisture fields. It is examined for transports of the total, latent energy (LE), and dry static energy (DSE) to land as a whole and as zonal means. The net convergence of energy onto land is balanced by the loss of energy at TOA, measured by Clouds and the Earth’s Radiant Energy System (CERES), and again there are notable discrepancies. Only the ECMWF Interim Re-Analysis (ERA-I) is stable and plausible. Strong compensation between variations in LE and DSE transports onto land means that their sum is more stable over time, and the net transport of energy onto land is largely that associated with the hydrological cycle (LE). A more detailed examination is given of the energy and water budgets for Eurasia, North and South America, Australia, and Africa, making use of Gravity Recovery and Climate Experiment (GRACE) data for water storage on land and data on river discharge into the ocean. With ERA-I, the new land estimates for both water and energy are closer to achieving balances than in previous studies. As well as the annual means, the mean annual cycles are examined in detail along with uncertainty sampling estimates, but the main test used here is that of closure.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Trenberth, Kevin
Fasullo, John
Publisher UCAR/NCAR - Library
Publication Date 2013-10-15T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:48:11.564308
Metadata Record Identifier edu.ucar.opensky::articles:12924
Metadata Language eng; USA
Suggested Citation Trenberth, Kevin, Fasullo, John. (2013). Regional energy and water cycles: Transports from ocean to land. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7tx3g7z. Accessed 18 June 2025.

Harvest Source