Revisiting the relationship between eyewall contraction and intensification

In the widely accepted convective ring model of tropical cyclone intensification, the intensification of the maximum winds and the contraction of the radius of maximum winds (RMW) occur simultaneously. This study shows that in idealized numerical simulations, contraction and intensification commence at the same time, but that contraction ceases long before peak intensity is achieved. The rate of contraction decreases with increasing initial size, while the rate of intensification does not vary systematically with initial size. Utilizing a diagnostic expression for the rate of contraction, it is shown that contraction is halted in association with a rapid increase in the sharpness of the tangential wind profile near the RMW and is not due to changes in the radial gradient of the tangential wind tendency. It is shown that a number of real storms exhibit a relationship between contraction and intensification that is similar to what is seen in the idealized simulations. In particular, the statistical distribution of intensifying tropical cyclones indicates that, for major hurricanes, most contraction is completed prior to most intensification. By forcing a linearized vortex model with the diabatic heating and frictional tendencies from a simulation, it is possible to qualitatively reproduce the simulated secondary circulation and separately examine the vortex responses to heating and friction. It is shown that heating and friction both contribute substantially to boundary layer inflow. They also both contribute to the contraction of the RMW, as the positive wind tendency from heating-induced inflow is maximized inside of the RMW, while the net negative wind tendency from friction and frictionally induced inflow is maximized outside of the RMW.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Stern, Daniel P.
Vigh, Jonathan
Nolan, D.
Zhang, F.
Publisher UCAR/NCAR - Library
Publication Date 2015-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-12T00:00:55.016118
Metadata Record Identifier edu.ucar.opensky::articles:16615
Metadata Language eng; USA
Suggested Citation Stern, Daniel P., Vigh, Jonathan, Nolan, D., Zhang, F.. (2015). Revisiting the relationship between eyewall contraction and intensification. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7rb75sf. Accessed 02 August 2025.

Harvest Source