Statistical study of foreshock transients in the midtail foreshock

In the dayside foreshock, many foreshock transients have been observed and simulated. Because of their strong dynamic pressure perturbations, foreshock transients can disturb the local bow shock, magnetosheath, magnetopause, and thus the magnetosphere-ionosphere system. They can also accelerate particles contributing to shock acceleration. Recent observations and simulations showed that foreshock transients also exist in the midtail foreshock, which can continuously disturb the nightside bow shock, magnetosheath, and magnetopause while propagating tailward for tens of minutes. To further understand the characteristics of midtail foreshock transients, we studied them statistically using Acceleration Reconnection Turbulence & Electrodynamics of Moon’s Interaction with the Sun observations. We selected 111 events that have dynamic pressure decrease along the local bow shock normal by more than 50%. We show that the dynamic pressure decrease is contributed by both density decrease and speed decrease. Around 90% of the events have electron temperature increase by more than 10% with a temperature change ratio proportional to the solar wind speed. Midtail foreshock transients more likely occur at the dawnside than the duskside. They are more significant closer to the bow shock and rather stable along the tailward direction. They have similar formation conditions compared to the dayside foreshock transients, except the ones related to the bow shock geometry. Our study indicates that the characteristics of foreshock transients based on dayside observations need to be generalized. Our study also implies that foreshock transients can exist for tens of minutes (even longer for larger planar shocks), continuously disturbing the local shock and accelerating/heating particles.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2021 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Liu, Terry Z.
Zhang, Hui
Wang, Chih‐Ping
Angelopoulos, Vassilis
Vu, Andrew
Wang, Xueyi
Lin, Yu
Publisher UCAR/NCAR - Library
Publication Date 2021-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:15:20.918527
Metadata Record Identifier edu.ucar.opensky::articles:24452
Metadata Language eng; USA
Suggested Citation Liu, Terry Z., Zhang, Hui, Wang, Chih‐Ping, Angelopoulos, Vassilis, Vu, Andrew, Wang, Xueyi, Lin, Yu. (2021). Statistical study of foreshock transients in the midtail foreshock. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d79p352x. Accessed 19 June 2025.

Harvest Source