Trade-offs between three forest ecosystem services across the state of New Hampshire, USA: timber, carbon, and albedo

Forests are more frequently being managed to store and sequester carbon for the purposes of climate change mitigation. Generally, this practice involves long-term conservation of intact mature forests and/or reductions in the frequency and intensity of timber harvests. However, incorporating the influence of forest surface albedo often suggests that long rotation lengths may not always be optimal in mitigating climate change in forests characterized by frequent snowfall. To address this, we investigated trade-offs between three ecosystem services: carbon storage, albedo-related radiative forcing, and timber provisioning. We calculated optimal rotation length at 498 diverse Forest Inventory and Analysis forest sites in the state of New Hampshire, USA. We found that the mean optimal rotation lengths across all sites was 94 yr (standard deviation of sample means = 44 yr), with a large cluster of short optimal rotation lengths that were calculated at high elevations in the White Mountain National Forest. Using a regression tree approach, we found that timber growth, annual storage of carbon, and the difference between annual albedo in mature forest vs. a post-harvest landscape were the most important variables that influenced optimal rotation. Additionally, we found that the choice of a baseline albedo value for each site significantly altered the optimal rotation lengths across all sites, lowering the mean rotation to 59 yr with a high albedo baseline, and increasing the mean rotation to 112 yr given a low albedo baseline. Given these results, we suggest that utilizing temperate forests in New Hampshire for climate mitigation purposes through carbon storage and the cessation of harvest is appropriate at a site-dependent level that varies significantly across the state.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : Data from: Tradeoffs between three forest ecosystem services across the state of New Hampshire, USA: timber, carbon, and albedo

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 Ecological Society of America


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Lutz, D.
Burakowski, Elizabeth
Murphy, M.
Borsuk, M.
Niemiec, R.
Howarth, R.
Publisher UCAR/NCAR - Library
Publication Date 2016-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T20:52:05.091516
Metadata Record Identifier edu.ucar.opensky::articles:18085
Metadata Language eng; USA
Suggested Citation Lutz, D., Burakowski, Elizabeth, Murphy, M., Borsuk, M., Niemiec, R., Howarth, R.. (2016). Trade-offs between three forest ecosystem services across the state of New Hampshire, USA: timber, carbon, and albedo. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7bg2t6f. Accessed 31 July 2025.

Harvest Source