Spatial model fitting for large datasets with applications to climate and microarray problems

Many problems in the environmental and biological sciences involve the analysis of large quantities of data. Further, the data in these problems are often subject to various types of structure and, in particular, spatial dependence. Traditional model fitting often fails due to the size of the datasets since it is difficult to not only specify but also to compute with the full covariance matrix describing the spatial dependence. We propose a very general type of mixed model that has a random spatial component. Recognizing that spatial covariance matrices often exhibit a large number of zero or near-zero entries, covariance tapering is used to force near-zero entries to zero. Then, taking advantage of the sparse nature of such tapered covariance matrices, backfitting is used to estimate the fixed and random model parameters. The novelty of the paper is the combination of the two techniques, tapering and backfitting, to model and analyze spatial datasets several orders of magnitude larger than those datasets typically analyzed with conventional approaches. Results will be demonstrated with two datasets. The first consists of regional climate model output that is based on an experiment with two regional and two driver models arranged in a two-by-two layout. The second is microarray data used to build a profile of differentially expressed genes relating to cerebral vascular malformations, an important cause of hemorrhagic stroke and seizures.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2008 Authors. The final publication is available at www.springerlink.com.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Furrer, Reinhard
Sain, Stephan
Publisher UCAR/NCAR - Library
Publication Date 2008-06-11T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:25:47.256282
Metadata Record Identifier edu.ucar.opensky::articles:18103
Metadata Language eng; USA
Suggested Citation Furrer, Reinhard, Sain, Stephan. (2008). Spatial model fitting for large datasets with applications to climate and microarray problems. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d75x2bg5. Accessed 23 June 2025.

Harvest Source