Combining machine learning and SMILEs to classify, better understand, and project changes in ENSO events

The El Nino-Southern Oscillation (ENSO) occurs in three phases: neutral, warm (El Nino), and cool (La Nina). While classifying El Nino and La Nina is relatively straightforward, El Nino events can be broadly classified into two types: central Pacific (CP) and eastern Pacific (EP). Differentiating between CP and EP events is currently dependent on both the method and observational dataset used. In this study, we create a new classification scheme using supervised machine learning trained on 18 observational and re-analysis products. This builds on previous work by identifying classes of events using the temporal evolution of sea surface temperature in multiple regions across the tropical Pacific. By applying this new classifier to seven single model initial-condition large ensembles (SMILEs) we investigate both the internal variability and forced changes in each type of ENSO event, where events identified behave similarly to those observed. It is currently debated whether the observed increase in the frequency of CP events after the late 1970s is due to climate change. We found it to be within the range of internal variability in the SMILEs for trends after 1950, but not for the full observed period (1896 onwards). When considering future changes, we do not project a change in CP frequency or amplitude under a strong warming scenario (RCP8.5/SSP370) and we find model differences in EP El Nino and La Nina frequency and amplitude projections. Finally, we find that models show differences in projected precipitation and sea surface temperature (SST) pattern changes for each event type that do not seem to be linked to the Pacific mean state SST change, although the SST and precipitation changes in individual SMILEs are linked. Our work demonstrates the value of combining machine learning with climate models, and highlights the need to use SMILEs when evaluating ENSO in climate models because of the large spread of results found within a single model due to internal variability alone.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Maher, Nicola
Tabarin, Thibault P.
Milinski, Sebastian
Publisher UCAR/NCAR - Library
Publication Date 2022-09-06T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:18:37.180240
Metadata Record Identifier edu.ucar.opensky::articles:25684
Metadata Language eng; USA
Suggested Citation Maher, Nicola, Tabarin, Thibault P., Milinski, Sebastian. (2022). Combining machine learning and SMILEs to classify, better understand, and project changes in ENSO events. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7nv9p1s. Accessed 21 June 2025.

Harvest Source