Global soil moisture estimation by assimilating AMSR-E brightness temperatures in a coupled CLM4-RTM-DART system

Very few frameworks exist that estimate global-scale soil moisture through microwave land data assimilation (DA). Toward this goal, such a framework has been developed by linking the Community Land Model, version 4 (CLM4), and a microwave radiative transfer model (RTM) with the Data Assimilation Research Testbed (DART). The deterministic ensemble adjustment Kalman filter (EAKF) within DART is utilized to estimate global multilayer soil moisture by assimilating brightness temperature observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). A 40-member ensemble of Community Atmosphere Model, version 4.0 (CAM4.0), reanalysis is adopted to drive CLM4 simulations. Space-specific, time-invariant microwave parameters are precalibrated to minimize uncertainties in RTM. Besides, various methods are designed to upscale AMSR-E observations for computational efficiency and time shift CAM4.0 forcing to facilitate global daily assimilations. A series of experiments are conducted to quantify the DA sensitivity to microwave parameters, choice of assimilated observations, and different CLM4 updating schemes. Evaluation results indicate that the newly established CLM4-RTM-DART framework improves the open-loop CLM4-simulated soil moisture. Precalibrated microwave parameters, rather than their default values, can ensure a more robust global-scale performance. In addition, updating near-surface soil moisture is capable of improving soil moisture in deeper layers (0-30 cm), while simultaneously updating multilayer soil moisture fails to obtain intended improvements. Future work is needed to address the systematic bias in CLM4 that cannot be fully covered through the ensemble spread in CAM4.0 reanalysis.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : AMSR-E/Aqua Daily Global Quarter-Degree Gridded Brightness Temperatures, Version 1

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zhao, Long
Yang, Zong-Liang
Hoar, Timothy
Publisher UCAR/NCAR - Library
Publication Date 2016-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:00:13.412020
Metadata Record Identifier edu.ucar.opensky::articles:18666
Metadata Language eng; USA
Suggested Citation Zhao, Long, Yang, Zong-Liang, Hoar, Timothy. (2016). Global soil moisture estimation by assimilating AMSR-E brightness temperatures in a coupled CLM4-RTM-DART system. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7qj7jxj. Accessed 25 June 2025.

Harvest Source