Implementation and evaluation of dynamic subfilter-scale stress models for large-eddy simulation using WRF

The performance of a range of simple to moderately-complex subfilter-scale (SFS) stress models implemented in the Weather Research and Forecasting (WRF) model is evaluated in large-eddy simulations of neutral atmospheric boundary layer flow over both a flat terrain and a two-dimensional symmetrical transverse ridge. Two recently developed dynamic SFS stress models, the Lagrangian-averaged scale-dependent (LASD) dynamic model and the dynamic reconstruction model (DRM), are compared with the WRF model’s existing constant-coefficient linear eddy-viscosity and (as of version 3.2) nonlinear SFS stress models to evaluate the benefits of more sophisticated and accurate, but also more computationally expensive approaches. Simulation results using the different SFS stress models are compared among each other, as well as against the Monin-Obukhov similarity theory. For the flat terrain case, vertical profiles of mean wind speed from the newly implemented dynamic models show the best agreement with the similarity solution, improving even upon the nonlinear model, which likewise yields a significant improvement compared to the Smagorinsky model. The more sophisticated SFS stress models more successfully predict the expected production and inertial range scaling of power spectra, especially near the surface, with the dynamic models achieving the best scaling overall. For the transverse ridge case, the nonlinear model predicts the greatest amount of reverse flow in the lee of the ridge, and also demonstrates the greatest ability to duplicate qualitative features of the highest-resolution simulations at coarser resolutions. The dynamic models’ flow distributions in the lee of the ridge did not differ significantly from the constant-coefficient Smagorinsky model.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Kirkil, Gokhan
Mirocha, Jeff
Bou-Zeid, Elie
Chow, Fotini
Kosović, Branko
Publisher UCAR/NCAR - Library
Publication Date 2012-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:59:23.535695
Metadata Record Identifier edu.ucar.opensky::articles:12047
Metadata Language eng; USA
Suggested Citation Kirkil, Gokhan, Mirocha, Jeff, Bou-Zeid, Elie, Chow, Fotini, Kosović, Branko. (2012). Implementation and evaluation of dynamic subfilter-scale stress models for large-eddy simulation using WRF. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7jh3mwh. Accessed 17 June 2025.

Harvest Source