Microphysical characteristics of three convective events with intense rainfall observed by polarimetric radar and disdrometer in eastern China

Polarimetric radar and disdrometer observations obtained during the 2014 Observation, Prediction, and Analysis of Severe Convection of China (OPACC) field campaign are used in this study to investigate the microphysical characteristics of three primary types of organized intense rainfall events (meiyu rainband, typhoon outer rainband, and squall line) in eastern China. Drop size distributions (DSDs) of these three events on the ground are derived from measurements of a surface disdrometer, while the corresponding three-dimensional microphysical structures are obtained from the Nanjing University C-band polarimetric radar (NJU-CPOL). Although the environmental moisture and instability conditions are different, all three events possess relatively high freezing level favorable for warm-rain processes where the high medium to small raindrop concentration at low levels is consistent with the high surface rainfall rates. Convection is tallest in the squall line where abundant ice-phase processes generate large amounts of rimed particles (graupel and hail) above the freezing level and the largest surface raindrops are present among these three events. The storm tops of both the typhoon and meiyu rainbands are lower than that in the squall line, composed of less active ice processes above the freezing level. The typhoon rainrate is more intense than that of meiyu, enhanced by higher coalescence efficiency. A revised generalized intercept parameter versus mass-weighted mean diameter (N-w-D-m) space diagram is constructed to describe the DSD distributions over the three events and illustrate the relative DSD positions for heavy precipitation. DSDs of these intense rainfall convections observed in this midlatitude region of eastern Asia somewhat represent the typical DSD characteristics in low latitudes, suggesting that the parameterization of microphysical characteristics in eastern China in numerical models needs to be further investigated to improve rain fall forecasts in these heavy rainfall events.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Chen, Gang
Zhao, Kun
Wen, Long
Wang, Mengyao
Huang, Hao
Wang, Mingjun
Yang, Zhengwei
Zhang, Guifu
Zhang, Pengfei
Lee, Wen-Chau
Publisher UCAR/NCAR - Library
Publication Date 2019-08-24T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:08:28.107763
Metadata Record Identifier edu.ucar.opensky::articles:22859
Metadata Language eng; USA
Suggested Citation Chen, Gang, Zhao, Kun, Wen, Long, Wang, Mengyao, Huang, Hao, Wang, Mingjun, Yang, Zhengwei, Zhang, Guifu, Zhang, Pengfei, Lee, Wen-Chau. (2019). Microphysical characteristics of three convective events with intense rainfall observed by polarimetric radar and disdrometer in eastern China. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7gq71wf. Accessed 18 June 2025.

Harvest Source