Quantifying and understanding forced changes to unforced modes of atmospheric circulation variability over the North Pacific in a coupled model large ensemble

While much attention has been given to understanding how anthropogenic radiative forcing influences the mean state of the climate system, far less scrutiny has been paid to how it may modulate naturally occurring modes of variability. This study investigates forced changes to unforced modes of wintertime atmospheric circulation variability and associated impacts on precipitation over the North Pacific and adjacent regions based on the 40-member Community Earth System Model version 1 Large Ensemble across the 1920-2100 period. Each simulation is subject to the same radiative forcing protocol but starts from a slightly different initial condition, leading to different sequences of internal variability. Evolving forced changes in the amplitude and spatial character of the leading internal modes of 500-hPa geopotential height variability are determined by applying empirical orthogonal function analysis across the ensemble dimension at each time step. The results show that the leading modes of internal variability intensify and expand their region of influence in response to anthropogenic forcing, with concomitant impacts on precipitation. Linkages between the Pacific and Atlantic sectors, and between the tropics and extratropics, are also enhanced in the future. These projected changes are driven partly by teleconnections from amplified ENSO activity and partly by dynamical processes intrinsic to the extratropical atmosphere. The marked influence of anthropogenic forcing on the characteristics of internal extratropical atmospheric circulation variability presents fundamental societal challenges to future water resource planning, flood control, and drought mitigation.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author O’Brien, John P.
Deser, Clara
Publisher UCAR/NCAR - Library
Publication Date 2023-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:42:00.530622
Metadata Record Identifier edu.ucar.opensky::articles:26131
Metadata Language eng; USA
Suggested Citation O’Brien, John P., Deser, Clara. (2023). Quantifying and understanding forced changes to unforced modes of atmospheric circulation variability over the North Pacific in a coupled model large ensemble. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d79p35j6. Accessed 21 June 2025.

Harvest Source