Revisiting the precipitous terrain classification from a meteorological perspective

Takeoff and landing maneuvers can be particularly hazardous at airports surrounded by complex terrain. To address this situation, the Federal Aviation Administration has developed a precipitous terrain classification as a way to impose more restrictive terrain clearances in the vicinity of complex terrain and to mitigate possible altimeter errors and pilot control problems experienced while executing instrument approach procedures. The current precipitous point value (PPV) algorithm relies on the terrain characteristics within a local area of 2 n mi (3.7 km) in radius and is therefore static in time. In this work, we investigate the role of meteorological effects leading to potential aviation hazards over complex terrain, namely, turbulence, altimeter-setting errors, and density-altitude deviations. To that end, we combine observations with high-resolution numerical weather forecasts within a 2 degrees x 2 degrees region over the Rocky Mountains in Colorado containing three airports that are surrounded by precipitous terrain. Both available turbulence reports and model's turbulence forecasts show little correlation with the PPV algorithm for the region analyzed, indicating that the static terrain characteristics cannot generally be used to reliably capture hazardous low-level turbulence events. Altimeter-setting errors and density-altitude effects are also found to be only very weakly correlated with the PPV algorithm. Altimeter-setting errors contribute to hazardous conditions mainly during cold seasons, driven by synoptic weather systems, whereas density-altitude effects are on the contrary predominantly present during the spring and summer months and follow a very well-marked diurnal evolution modulated by surface radiative effects. These findings demonstrate the effectiveness of high-resolution weather forecast information in determining aviation-relevant hazardous conditions over complex terrain.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Muñoz-Esparza, Domingo
Shin, Hyeyum Hailey
Keller, Teddie L.
Ikeda, Kyoko
Sharman, Robert D.
Steiner, Matthias
Rawdon, Jeff
Pokodner, Gary
Publisher UCAR/NCAR - Library
Publication Date 2021-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:34:24.828727
Metadata Record Identifier edu.ucar.opensky::articles:24870
Metadata Language eng; USA
Suggested Citation Muñoz-Esparza, Domingo, Shin, Hyeyum Hailey, Keller, Teddie L., Ikeda, Kyoko, Sharman, Robert D., Steiner, Matthias, Rawdon, Jeff, Pokodner, Gary. (2021). Revisiting the precipitous terrain classification from a meteorological perspective. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7cj8hzv. Accessed 23 June 2025.

Harvest Source