Separating the influences of low-latitude warming and sea ice loss on Northern Hemisphere climate change

Analyzing a multimodel ensemble of coupled climate model simulations forced with Arctic sea ice loss using a two-parameter pattern-scaling technique to remove the cross-coupling between low- and high-latitude responses, the sensitivity to high-latitude sea ice loss is isolated and contrasted to the sensitivity to low-latitude warming. Despite some differences in experimental design, the Northern Hemisphere near-surface atmospheric sensitivity to sea ice loss is found to be robust across models in the cold season; however, a larger intermodel spread is found at the surface in boreal summer, and in the free tropospheric circulation. In contrast, the sensitivity to low-latitude warming is most robust in the free troposphere and in the warm season, with more intermodel spread in the surface ocean and surface heat flux over the Northern Hemisphere. The robust signals associated with sea ice loss include upward turbulent and longwave heat fluxes where sea ice is lost, warming and freshening of the Arctic Ocean, warming of the eastern North Pacific Ocean relative to the western North Pacific with upward turbulent heat fluxes in the Kuroshio Extension, and salinification of the shallow shelf seas of the Arctic Ocean alongside freshening in the subpolar North Atlantic Ocean. In contrast, the robust signals associated with low-latitude warming include intensified ocean warming and upward latent heat fluxes near the western boundary currents, freshening of the Pacific Ocean, salinification of the North Atlantic, and downward sensible and longwave fluxes over the ocean.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2022 American Meteorological Society


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hay, Stephanie
Kushner, Paul J.
Blackport, Russell
McCusker, Kelly E.
Oudar, Thomas
Sun, Lantao
England, Mark
Deser, Clara
Screen, James A.
Polvani, Lorenzo M.
Publisher UCAR/NCAR - Library
Publication Date 2022-04-15T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:37:24.233116
Metadata Record Identifier edu.ucar.opensky::articles:25475
Metadata Language eng; USA
Suggested Citation Hay, Stephanie, Kushner, Paul J., Blackport, Russell, McCusker, Kelly E., Oudar, Thomas, Sun, Lantao, England, Mark, Deser, Clara, Screen, James A., Polvani, Lorenzo M.. (2022). Separating the influences of low-latitude warming and sea ice loss on Northern Hemisphere climate change. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7x63rps. Accessed 29 June 2025.

Harvest Source