Statistical postprocessing of high-resolution regional climate model output

Statistical postprocessing techniques have become essential tools for downscaling large-scale information to the point scale, and also for providing a better probabilistic characterization of hydrometeorological variables in simulation and forecasting applications at both short and long time scales. In this paper, the authors assess the utility of statistical postprocessing methods for generating probabilistic estimates of daily precipitation totals, using deterministic high-resolution outputs obtained with the Weather Research and Forecasting (WRF) Model. After a preliminary assessment of WRF simulations over a historical period, the performance of three postprocessing techniques is compared: multinomial logistic regression (MnLR), quantile regression (QR), and Bayesian model averaging (BMA)-all of which use WRF outputs as potential predictors. Results demonstrate that the WRF Model has skill in reproducing observed precipitation events, especially during fall/winter. Furthermore, it is shown that the spatial distribution of skill obtained from statistical postprocessing is closely linked with the quality of WRF precipitation outputs. A detailed comparison of statistical precipitation postprocessing approaches reveals that, although the poorest performance was obtained using MnLR, there is not an overall best technique. While QR should be preferred if skill (i.e., small probability forecast errors) and reliability (i.e., match between forecast probabilities and observed frequencies) are target properties, BMA is recommended in cases when discrimination (i.e., prediction of occurrence versus nonoccurrence) and statistical consistency (i.e., equiprobability of the observations within their ensemble distributions) are desired. Based on the results obtained here, the authors believe that future research should explore frameworks reconciling hierarchical Bayesian models with the use of the extreme value theory for high precipitation events.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Mendoza, Pablo
Rajagopalan, Balaji
Clark, Martyn
Ikeda, Kyoko
Rasmussen, Roy
Publisher UCAR/NCAR - Library
Publication Date 2015-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:42:50.559563
Metadata Record Identifier edu.ucar.opensky::articles:16675
Metadata Language eng; USA
Suggested Citation Mendoza, Pablo, Rajagopalan, Balaji, Clark, Martyn, Ikeda, Kyoko, Rasmussen, Roy. (2015). Statistical postprocessing of high-resolution regional climate model output. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d70g3mb1. Accessed 19 June 2025.

Harvest Source