The impact of horizontal resolution on projected sea‐level rise along US east continental shelf with the Community Earth System Model

The Intergovernmental Panel on Climate Change Fifth Assessment Report lists sea-level rise as one of the major future climate challenges. Based on pre-industrial and historical-and-future climate simulations with the Community Earth System Model, we analyze the projected sea-level rise in the Northwest Atlantic Ocean with two sets of simulations at different horizontal resolutions. Compared with observations, the low resolution (LR) model simulated Gulf Stream does not separate from the shore but flows northward along the entire coast, causing large biases in regional dynamic sea level (DSL). The high resolution (HR) model improves the Gulf Stream representation and reduces biases in regional DSL. Under the RCP8.5 future climate scenario, LR projects a DSL trend of 1.5-2 mm/yr along the northeast continental shelf (north of 40 degrees N), which is 2-3 times the trend projected by HR. Along the southeast shelf (south of 35 degrees N), HR projects a DSL trend of 0.5-1 mm/yr while the DSL trend in LR is statistically insignificant. The different spatial patterns of DSL changes are attributable to the different Gulf Stream reductions in response to a weakening Atlantic Meridional Overturning Circulation. Due to its poor representation of the Gulf Stream, LR projects larger (smaller) current decreases along the north (south) east continental slope compared to HR. This leads to larger (smaller) trends of DSL rise along the north (south) east shelf in LR than in HR. The results of this study suggest that the better resolved ocean circulations in HR can have significant impacts on regional DSL simulations and projections.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Li, Dapeng
Chang, Ping
Yeager, Stephen
Danabasoglu, Gokhan
Castruccio, Frederic S.
Small, Justin R.
Wang, Hong
Zhang, Qiuying
Gopal, Abishek
Publisher UCAR/NCAR - Library
Publication Date 2022-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:36:42.413121
Metadata Record Identifier edu.ucar.opensky::articles:25399
Metadata Language eng; USA
Suggested Citation Li, Dapeng, Chang, Ping, Yeager, Stephen, Danabasoglu, Gokhan, Castruccio, Frederic S., Small, Justin R., Wang, Hong, Zhang, Qiuying, Gopal, Abishek. (2022). The impact of horizontal resolution on projected sea‐level rise along US east continental shelf with the Community Earth System Model. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7zg6wxs. Accessed 21 June 2025.

Harvest Source