Theoretical expressions for the ascent rate of moist deep convective thermals

An approximate analytic expression is derived for the ratio lambda of the ascent rate of moist deep convective thermals and the maximum vertical velocity within them; lambda is characterized as a function of two non-dimensional buoyancy-dependent parameters y and h and is used to express the thermal ascent rate as a function of the buoyancy field. The parameter y characterizes the vertical distribution of buoyancy within the thermal, and h is the ratio of the vertically integrated buoyancy from the surface to the thermal top and the vertical integral of buoyancy within the thermal. Theoretical l values are calculated using values of y and h obtained from idealized numerical simulations of ascending moist updrafts and compared to lambda computed directly from the simulations. The theoretical values of lambda approximate to 0.4-0.8 are in reasonable agreement with the simulated lambda (correlation coefficient of 0.86). These values are notably larger than the lambda = 0.4 from Hill's (nonbuoyant) analytic spherical vortex, which has been used previously as a framework for understanding the dynamics of moist convective thermals. The relatively large values of l are a result of net positive buoyancy within the upper part of thermals that opposes the downward-directed dynamic pressure gradient force below the thermal top. These results suggest that nonzero buoyancy within moist convective thermals, relative to their environment, fundamentally alters the relationship between the maximum vertical velocity and the thermal-top ascent rate compared to nonbuoyant vortices. Implications for convection parameterizations and interpretation of the forces contributing to thermal drag are discussed.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 The American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Morrison, Hugh
Peters, John M.
Publisher UCAR/NCAR - Library
Publication Date 2018-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:15:15.549397
Metadata Record Identifier edu.ucar.opensky::articles:21702
Metadata Language eng; USA
Suggested Citation Morrison, Hugh, Peters, John M.. (2018). Theoretical expressions for the ascent rate of moist deep convective thermals. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d70z762t. Accessed 19 June 2025.

Harvest Source