Influence of assimilating satellite-derived atmospheric motion vector observations on numerical analyses and forecasts of tropical cyclone track and intensity

The influence of assimilating enhanced atmospheric motion vectors (AMVs) on mesoscale analyses and forecasts of tropical cyclones (TC) is investigated. AMVs from the geostationary Multifunctional Transport Satellite (MTSAT) are processed by the Cooperative Institute for Meteorological Satellite Studies (CIMSS, University of Wisconsin-Madison) for the duration of Typhoon Sinlaku (2008), which included a rapid intensification phase and a slow, meandering track. The ensemble Kalman filter and the Weather Research and Forecasting Model are utilized within the Data Assimilation Research Testbed. In addition to conventional observations, three different groups of AMVs are assimilated in parallel experiments: CTL, the same dataset assimilated in the NCEP operational analysis; CIMSS(h), hourly datasets processed by CIMSS; and CIMSS(h+RS), the dataset including AMVs from the rapid-scan mode. With an order of magnitude more AMV data assimilated, the CIMSS(h) analyses exhibit a superior track, intensity, and structure to CTL analyses. The corresponding 3-day ensemble forecasts initialized with CIMSS(h) yield smaller track and intensity errors than those initialized with CTL. During the period when rapid-scan AMVs are available, the CIMSS(h+RS) analyses offer additional modifications to the TC and its environment. In contrast to many members in the ensemble forecasts initialized from the CTL and CIMSS(h) analyses that predict an erroneous landfall in China, the CIMSS(h+RS) members capture recurvature, albeit prematurely. The results demonstrate the promise of assimilating enhanced AMV data into regional TC models. Further studies to identify optimal strategies for assimilating integrated full-resolution multivariate data from satellites are under way.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Wu, T.
Liu, Hui
Majumdar, S.
Velden, C.
Anderson, Jeffrey L.
Publisher UCAR/NCAR - Library
Publication Date 2014-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-12T01:13:53.904538
Metadata Record Identifier edu.ucar.opensky::articles:13178
Metadata Language eng; USA
Suggested Citation Wu, T., Liu, Hui, Majumdar, S., Velden, C., Anderson, Jeffrey L.. (2014). Influence of assimilating satellite-derived atmospheric motion vector observations on numerical analyses and forecasts of tropical cyclone track and intensity. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d71837dm. Accessed 15 August 2025.

Harvest Source