Supporting the detection and monitoring of volcanic clouds: A promising new application of global navigation satellite system radio occultation

The altitude of volcanic clouds and the atmospheric thermal structure after volcanic eruptions are studied using Global Navigation Satellite System (GNSS) Radio Occultation (RO) profiles co-located with independent radiometer images of ash and sulfur dioxide plumes. We use geographically co-located RO profiles to detect the top altitude of volcanic clouds and to analyze their impact in terms of temperature change signatures. We obtained about 1300 RO profiles co-located with two representative eruptions (Puyehue 2011, Nabro 2011) and found that an anomaly technique recently developed for detecting convective cloud tops and studying the vertical thermal structure of deep convective systems can also be applied to volcanic clouds. Analyzing the atmospheric thermal structure after the eruptions, we found clear cooling signatures induced by volcanic cloud tops in the upper troposphere for the Puyehue case. For the Nabro case we detected a significant warming in the stratosphere which lasted for several months, indicating that the cloud reached the stratosphere. The results are encouraging for future large-scale use of RO data for supporting the monitoring of volcanic clouds and their impacts on weather and climate. (C) 2017 COSPAR. Published by Elsevier Ltd.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 COSPAR. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Biondi, R.
Steiner, A. K.
Kirchengast, G.
Brenot, H.
Rieckh, Therese
Publisher UCAR/NCAR - Library
Publication Date 2017-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:44:06.668038
Metadata Record Identifier edu.ucar.opensky::articles:21236
Metadata Language eng; USA
Suggested Citation Biondi, R., Steiner, A. K., Kirchengast, G., Brenot, H., Rieckh, Therese. (2017). Supporting the detection and monitoring of volcanic clouds: A promising new application of global navigation satellite system radio occultation. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7pr7zm7. Accessed 14 August 2025.

Harvest Source