Using Long Short-Term Memory (LSTM) and Internet of Things (IoT) for Localized Surface Temperature Forecasting in an Urban Environment

The rising temperature is one of the key indicators of a warming climate, capable of causing extensive stress to biological systems as well as built structures.Ambient temperature collected at ground level can have higher variability than regional weather forecasts, which fail to capture local dynamics. There remains a clear need for accurate air temperature prediction at the suburban scale at high temporal and spatial resolutions. This research proposed a framework based on a long short-term memory (LSTM) deep learning network to generate day-ahead hourly temperature forecasts with high spatial resolution. Air temperature observations are collected at a very fine scale (similar to 150m) along major roads of New York City (NYC) through the Internet of Things (IoT) data for 2019-2020. The network is a stacked two layer LSTM network, which is able to process the measurements from all sensor locations at the same time and is able to produce predictions for multiple future time steps simultaneously. Experiments showed that the LSTM network outperformed other traditional time series forecasting techniques, such as the persistence model, historical average, AutoRegressive Integrated Moving Average (ARIMA), and feedforward neural networks (FNN). In addition, historical weather observations are collected from in situ weather sensors (i.e., Weather Underground, WU) within the region for the past five years. Experiments were conducted to compare the performance of the LSTM network with different training datasets: 1) IoT data alone, or 2) IoT data with the historical five years of WU data. By leveraging the historical air temperature from WU, the LSTM model achieved a generally increased accuracy by being exposed to more historical patterns that might not be present in the IoT observations. Meanwhile, by using IoT observations, the spatial resolution of air temperature predictions is significantly improved.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Yu, M.
Xu, F.
Hu, W.
Sun, J.
Cervone, Guido
Publisher UCAR/NCAR - Library
Publication Date 2021-09-29T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T16:11:27.866872
Metadata Record Identifier edu.ucar.opensky::articles:24792
Metadata Language eng; USA
Suggested Citation Yu, M., Xu, F., Hu, W., Sun, J., Cervone, Guido. (2021). Using Long Short-Term Memory (LSTM) and Internet of Things (IoT) for Localized Surface Temperature Forecasting in an Urban Environment. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7rr22qj. Accessed 21 August 2025.

Harvest Source